Table **111.** Effect of Reaction Conditions **on** the Cocyclizations of la $1a + (CH_3)$ ₅SiC=CSi(CH₃)₃ $\frac{C_pCo(L)_2, h\nu}{2a + 3a + 4a}$

	$(CH_3)_3$ SiC= $CSi(CH_3)_3$, equiv	temp. ۰c		vield, %	
C_2H_4	solvent	134	37	0	58
CO	solvent	134	25	0	49
CO	15	110	10	0	17
C_2H_4	solvent	25	74	18	0
CO	solvent	25	51	13	0
CO	5	25	38	10	0
C_2H_4	5	0	40	13	0
$\rm{C_2H_4}$	5	-78	35	0	0

confirmed by X-ray analysis.

Acknowledgment. This work was supported by the NIH-GM22479. G.S.S. is a Sohio Corporation Fellow (1986). K.P.C.V. is a Miller Professor in Residence (1985-1986).

Supplementary Material Available: Mp, bp, spectral, and analytical data on 25 new compounds, general experimental procedures employing $CpCoL_2$ ($\tilde{L} = CO$ or $CH_2=CH_2$), and optimized procedure for the preparation of 2a and 3a **(12** pages). Ordering information is given on any current masthead page.

George **S.** Sheppard, **K.** Peter **C.** Vollhardt*

Department of Chemistry University of California, Berkeley and the Materials and Molecular Research Division Lawrence Berkeley Laboratory Berkeley, California *94720* Received *July 14,* 1986

Free Radical Reactions **of** Organomercury Halides with Alkenes and Alkynes'

Summary: Substituted acetylenes or electronegatively monosubstituted ethylenes react with t -BuHgCl in photostimulated free radical chain processes in PhH or $Me₂SO$ to form $R^1C(t-Bu) = C(HgCl)R^2 (R^1, R^2 = H, Ph; H, COMe;$ EtO_2C , Ph; EtO_2C , EtO_2C) or t -BuCH₂CH(HgCl)E (E = $(EtO)₂PO, PhSO₂, p-O₂NC₆H₄, SiPh₃).$ Reduction by $BH₄$ or cleavage by I_2 forms $R^1C(t-Bu)$ =CHR² and t-BuCH₂CH₂E or $R^1\tilde{C}(t-Bu)$ = $C(I)R^2$ and $t-BuCH_2CH(I)E$.

Sir: We have previously reported the photostimulated free radical chain reaction of alylmercury halides with substituted alkenes² and alkynes³ occurring by an additionelimination mechanism with retention of configuration for $Q = I$ or HgCl (eq 1).^{4,5} Alkenes that are effective traps

$$
RHgCl + R'CH = CHQ \xrightarrow[Q = Bu_3Sn, PhS]{} R'CH = CHR\nPhSO2, I, HgCl\nR' = Ph, Cl, MeO2C
$$
\n(1)

for alkyl radicals but that are not susceptible to such ad-

Figure **1.** Measurement of initial kinetic chain length in PhH at 35–40 °C determined by ¹H NMR. In Me₂SO the rates are \sim 20% faster with the same inhibition period. Reactions in Me₂SO are considerably faster than in PhH at the latter stages of the reaction; the build-up of the terminating HgCl may be more important in PhH than in $Me₂SO$.

" Reaction of 3 equiv of t-BuHgC1 for 1-2 h with 0.2-0.4 mmol of alkyne in 2.5 mL of Me₂SO or PhH with irradiation from a 275-W sunlamp at 35-40 °C. 6 [PhC=CH]₀ = 0.166 M; [MeC(O)C=CH]₀ = 0.137 M. "Mixtures of E and Z isomers.⁹ ^{d}t -BuCH=CHCH-(0H)CHa (70%), t-BuCH=CHCOCH, (20%).

dition-elimination processes can also react cleanly with RHgCl by chain or nonchain processes. Chain reactions occur when the radical formed by addition of R' to the alkene is either a good donor (D^{\bullet}) or acceptor (A^{\bullet}) (reactions **2** and **3).**

$$
RHgCl + D \rightarrow D^+ + R \rightarrow Hg^0 + Cl^-
$$
 (2)

$$
RHgCl + A \rightarrow AHgCl + R
$$
 (3)

Competition reactions of excesses of t -BuHgCl and n -BuHgCl with $Me₂C=NO₂$, PhCH=CHSnBu₃, PhSSPh, or $CH_2=CHP(0)(OEt)_2$ (VP) give a $3^{\circ}/1^{\circ}$ relative reactivity of >200, >200, **>300,** and >1000, respectively, where the chain-carrying radicals are either D' $(\text{RCMe}_2\text{NO}_2^{\bullet-}, \text{Bu}_3\text{Sn}^{\bullet})$ or A^{\bullet} (PhS^{*}, $\text{RCH}_2\text{CHP(O)}(\text{OEt})_2$) and kinetic chain lengths measured by $(t-Bu)_{2}NO \cdot$ inhibition are 50, 40, 400, and 116, respectively. The high $3^{\circ}/1^{\circ}$ reactivity requires that reactions 2 and **3** are one-step processes.⁶ Such high $3^{\circ}/1^{\circ}$ reactivities appear to be characteristics of dissociative electron transfer processes, or perhaps, in the case of reaction 3, of a process with extensive electron shift in the transition state.⁷

Photostimulated reactions of RHgCl with VP, CH_2 = CHSO₂Ph, or CH₂=CHC₆H₄NO₂-p in PhH or Me₂SO proceed by chain reactions in which the consumption of the alkene is drastically retarded by the presence of $(t Bu)_2NO'$ (Figure 1). An initial kinetic chain length (kcl) of 95 (C_6D_6) and 116 (Me₂SO- d_6) is calculated for reaction 4 under the concentrations and conditions employed. In

⁽¹⁾ Electron Transfer Processes. **41.**

⁽²⁾ Russell, G. **A.;** Tashtoush, H.; Ngoviwatchai, P. J. *Am. Chem.* **SOC. 1984,106, 4622.**

⁽³⁾ Russell, G. **A.;** Ngoviwatchai, P. Tetrahedron *Lett.* **1986,27,3479.**

⁽⁴⁾ Russell, **G. A.** Ngoviwatchai, P. Tetrahedron *lett.* **1985,26,4975. (5)** Similar substitutions are observed for allyl iodides, sulfides, sulfones, or stannanes and for alkenyloxystannnes.

⁽⁶⁾ The reaction **of** RHgCl with BH4- involves the intermediates RHgH, RHg, R. (Russell, G. **A.;** Guo, D. Tetrahedron *Lett.* **1984, 25, 5239).** Relative reactivities of t-BuHgH and n-BuHgH toward **the** adduct radicals from reactive alkenes such as $CH_2=CC(Cl)CN$ or $CH_2=CHCO_2Et$ are $\sim 1:1$.

⁽⁷⁾ Pross, **A.** *Acc. Chem. Res.* **1985,** *18,* **212.**

$$
J. \text{ Org. Chem.}
$$

$$
t-\text{BuHgCl} \text{ (4 equiv)} + \text{VP} \xrightarrow{hv} t-\text{BuCH}_{2}CH(\text{HgCl})P(O)(\text{OEt})_{2} \text{ (4)}
$$

reaction 4, the intermediate t -BuCH₂CHP(O)(OEt)₂ is an acceptor radical which readily enters into reaction 3 with t-BuHgCl with $k > 10^5$ M⁻¹ s⁻¹.⁸ The resulting 1 can be reduced by BH_4^- or cleaved by I_2 in high overall yields

For radical which readily enters into reaction?
$$
gCl
$$
 with $k > 10^5 \, \text{M}^{-1} \, \text{s}^{-1.8}$. The resulting 1 c d by BH_4^- or cleaved by I_2 in high overall $t - \text{Buch}_2 \text{CH}_2\text{PO} \cdot \text{OEt}_2$ (98%)

\n1

(based on starting alkene). For $CH_2=CHSO_2Ph$ in $Me₂SO$, a kcl of 108 ([CH₂=CHSO₂Ph]₀ = 0.19 M) was measured at 35-40 °C, and yields of t -BuCH₂CH₂SO₂Ph and t -BuCH₂CH(I)SO₂Ph of 87% and 75% were obtained. In a similar fashion, $CH_2=CHSiPh_3$ yielded t- $BuCH₂H₂SiPh₃$ (68%) and *i*-PrCH₂CH₂SiPh₃ (85%) after BH_4^- reduction (kcl = 14 at 0.12 M $CH_2=CHSiPh_3$ in $\mathbf{Me}_2\mathbf{SO}$).

Vinyl radicals also react as A' in reaction 3. Thus, reaction **5** has been observed to occur by a chain process to

$$
R^{1}C \equiv CR^{2} + t \cdot B u H gCl \xrightarrow{h\nu} t \cdot B u C(R^{1}) = C(HgCl)R^{2} \quad (5)
$$

yield the vinylmercurial **(2)** which can be reduced by NaBH₄ or cleaved by I_2 (Table I) to form a mixture of the appropriate *E* and *Z* isomers.⁹

When addition of R^t to an alkene yields a donor radical, reaction 2 can occur. Thus, in Me₂SO, CH₂=C-Thus, in Me₂SO, $CH₂=C (C_6H_4OMe-p)$ ₂ (0.04 M) reacts with t-BuHgCl (0.12 M) in a photostimulated process with an initial kcl of 18 to form t -BuCH= $C(C_6H_4OMe)_2$ (85%) with only traces of t- $BuCH₂CH(C₆H₄OMe)₂$.¹⁰

Reaction of alkenes with RHgCl and BH₄⁻ leads to reaction 6,11 provided the alkene *can* compete effectively with

$$
\text{RHgCl} + \text{CH}_2\text{=CHE} \xrightarrow{\text{NaBH}_4} \text{RCH}_2\text{CH}_2\text{E} + \text{Hg}^0 \qquad (6)
$$

RHgH in the trapping of $\mathbb{R}^{*,6}$ Some relative reactivities of pertinent alkenes and alkynes in reaction 6 at 25 °C are $CH_2=CC$ C(Cl)CN (52); CH₂=CHCN (3.8); CH₂=CHSO₂Ph (2.5); CH₂=CHCO₂Et (1.0); EtO₂CC=CCO₂Et (0.9); VP $(0.53);^{12}$ CH₂=CPh₂ (0.21); HC=CCO₂Et (0.19); CH₂= CHPh (0.15); CH₂= $C(C_6H_4OMe-p)$ ₂ (0.11);¹³ CH₂= CCl_2

 $79/21$, the stereoselectivity being controlled by attack of RHgH upon linear t-BuCH=CPh. Assignment is based upon the known decarboxylation (Cu₂O, quinoline) of *t*-BuC(CO₂H)=CHPh to predominantly (*Z*)-*t*-BuCH=CHPh (Buckles, R. E.; Wheeler, N. G. *Organic Synthesis*; Wiley: New York, 1983; Collect. Vol. 4, p 857). From the chemical shift of the vinyl H $(\delta$ 7.1 (83%), 6.55 (17%)), the major isomer of t-BuC- (CO_2Et) =CHPh (Table I) can be assigned as E (i.e., t-Bu and H are trans). For t-BuC(CO₂Et)=CHCO₂Et, the chemical shifts of δ 5.81 (62%) and 6.18 (38%) allow the assignment of the Z isomer (t-Bu and H are cis) and 6.18 (38%) allow the assignment of the Z isomer (t-Bu and H **are** cis) as the major product.

(12) Attack of t-Bu' upon **W** has a rate constant of 5.9 **X le M-I** at 233 K Baban, J. A.; Roberts, B. P. *J.* Chem. Soc., Perkin Trans. 2 1981, 161.

 (0.06) ; CH₂=CHSPh (0.03) ; HC=CPh (0.02) ; EtO₂CC= CPh (0.014); CH₂=CHSOPh (0.005); CH₂=CHOEt, CH_2 =CHSiMe₃, CH₂=CHSnBu₃, CH₂=CHCMe₃, CH₂= CHNH₂, norbornene (all <0.005). When applied to a reactive alkene such **as** VP, both reactions 6 and 4 (followed by BH_4^-) give high yields of $RCH_2CH_2P(O)(OEt)_2$. However, when applied to less reactive substrates such as $PhC = CH$ or norbornene, the Giese reaction gives low yield $(8-10\%$ for PhC=CH, 0% for norbornene) because R^o is preferentially trapped by RHgH.⁶ In such cases, the two-step process involving addition of RHgCl to the double or triple bond followed by NaBH, reduction is preferable.

Alkenes which lead to adduct radicals without strong polar character can yield products of nonchain reactions. Thus, $CH_2=CPh_2$ readily traps t-Bu' from the photolysis of t-BuHgCl, but the resulting t -BuCH₂CPh₂ mainly disproportionate to form t -BuCH₂CHPh₂ and t -BuCH=CPh₂ $\tilde{(-1,1)}$ ratio).¹⁰ Here, trapping of t-BuCH₂CPh₂ by HgCl (from the photolysis of t -BuHgCl) would undoubtedly be reversible and not lead to a stable organometallic. On the other hand, excess norbornene (4 equiv in $Me₂SO$) forms an adduct radical with t-Bu' which is cleanly trapped by HgCl to form a new organomercurial (isolated in 50% yield after 24 h irradiation) which can be reduced by N aBH₄ to exo-2-tert-butylnorbornane.¹⁴ The rate of consumption of norbornene determined by lH NMR is equal *to* the rate of the photochemical dissociation of t-BuHgC1 **as** measured by the "inhibition" period observed in the presence of $(t-Bu)_{2}NO^{\bullet}$.

Acknowledgment. This work was supported by the National Science Foundation Grant CHE-8415453. Some initial experiments were performed by Mr. D. Guo.

Glen A. Russell,* Wan Jiang Shui Sheng **Hu,** Rajive K. Khanna

> Department *of* Chemistry Iowa State University Ames, Iowa 50011 Received October 29, 1986

Carboxylative Coupling **of** Propargylic Alcohols with Allyl Chloride

Summary: Palladium-mediated reaction of lithium 2 alkynyl carbonates with allyl chloride affords cyclic carbonates whose alkaline hydrolysis gives keto alcohols in good yields. The combination of the above procedure with the formation of lithium 2-alkynolates from lithioalkynes and carbonyl compounds provides novel use of lithioalkynes as acyl anion equivalents in the reaction of carbonyl compounds.

Sir: Insertion of carbon dioxide into oxiranes¹⁻⁷ or 2-

⁽⁸⁾ Based on k_p for polymerization of VP of 1×10^2 M⁻¹ s⁻¹ at 40 °C (Levin, Y. A.; Brew, A. A.; Ivanov, B. E. Dokl. Akad. Nauk SSSR 1977, 236, 154); a 3-fold excess of *t*-BuHgCl eliminates products derived from
attack of *t*-BuCH₂CHP(O)(OEt)₂ upon VP. The chain transfer rate
constant of VP radical with CCl₄ is >3 × 10² M⁻¹ s⁻¹ (Raynal, S. *Phos* t-BuHgCl is also an effective trap for RCH₂CHP(O)(OEt)₂. Reaction 4 in CCl₄ solution yields Cl₃CCH₂CH(HgCl)P(O)(OEt)₂ in 52% (based on the yield of Cl₃CCH₂CH₂P(O)(OEt)₂ after BH₄⁻ reduction). the yield of $Cl_3CCH_2CH_2PO(OEE)$, after BH_4^- reduction).

(9) For example, t-BuCH=CHPh (Table I) is formed with $Z/E =$

⁽¹⁰⁾ Russell, **G.** A.; Khanna, R. K.; Guo, D. J. Chem. SOC., Chem.

Commun. 1986, 632. (11) Fese, B. Angew. Chem., Znt. Ed. Engl. 1983,22, 753; 1985, 24, 553. Giese, B.; Horlen, H. *Tetrahedron* 1985, 41, 4025. Giese, B.;
Gröninger, K. *Tetrahedron Lett*. 1984, 25, 2473.

⁽¹³⁾ Diarylmethyl radicals apparently react slowly with RHgH. Thus,
in reaction **6**, $CH_2=CC_6H_4OMe)_2$ yields exclusively *t*-BuCH=C-
(C₆H₄OMe)₂ and CH₂=C(Ph)₂ yields either *t*-BuCH₂CHPh₂ or a mixture of t-BuCH₂CHPh₂ and t-BuCH=CPh₂ at low RHgH concentration.

^{(14) &#}x27;H NMR evidence **(300** MHz) favors the exo-2-tert-butyl-exo-**3-(chloromercurio)norborane** structure with H(3),H(4) 6 2.28-2.32; H(2) δ 1.64 (d), $J_{2,3}$ = 7.44 Hz; H(1) δ 2.52-2.54 (q); H(exo-t-Bu) δ 0.89.

⁽¹⁾ Matsuda, H.; Ninagawa, A.; Nomura, R.; Tsuchida, T. Chem. Lett. 1979, 573.

⁽²⁾ Matsuda, H.; Ninagawa, A.; Nomura, R. Chem. Lett. 1979, 1261. (3) Nomura, R.; Ninagawa, **A,;** Matsuda, H. *J.* Org. Chem. 1980, 45, 3735.